
i

Writing IBM SPSS Statistics Extension
Commands

Note: Before using this information and the product it supports, read the general information

under Notices on p. 35.

This edition applies to IBM® SPSS® Statistics 21 and to all subsequent releases and modifications

until otherwise indicated in new editions.

Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.

Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM

© Copyright IBM Corporation 1989, 2012.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

1 Introduction to Extension Commands 1

Integration Plug-ins . 2

XML Specification of the Syntax Diagram . 2

Implementation Code . 4

Deploying an Extension Command . 7

2 Examples of Extension Commands 9

Wrapping Around an Existing Python Function: PARETO . 9

Wrapping Around an Existing R Function: polychor . 12

Implementation Code. 13

3 Extension Schema Element Reference 20

Command Element . 20

Parameter Element . 21

EnumValue Element . 25

Subcommand Element . 25

Working with Arbitrary Tokens . 27

Examples . 28

Appendices

A Localizing Extension Commands Implemented in Python 30

Modifying the Python code . 30

Extracting translatable text . 32

Translating the pot file . 33

Installing the mo files . 33

© Copyright IBM Corporation 1989, 2012. iii

B Notices 35

Index 37

iv

Chapter

1
Introduction to Extension Commands

Extension commands provide the ability to run functions accessible through the IBM® SPSS®
Statistics Programmability Extension using familiar IBM® SPSS® Statistics command syntax.
This allows someone who is proficient with the Programmability Extension to share external
functions with users of SPSS Statistics command syntax. Extension commands require SPSS
Statistics release 16.0.1 or later, although some features (as noted) require a post 16.0.1 release.

This document provides an overview of the requirements for producing and using extension
commands.

To produce an extension command

E	 Install the Integration Plug-in for the programming language in which you want to implement
the command.

E	 Write the XML specification of the syntax diagram for the command based on the extension
schema.

E	 Write the implementation code for the command. Note that you can write implementation code
that simply accepts parsed command syntax and passes it to an existing function. For an example
of doing this with Python, see Wrapping Around an Existing Python Function: PARETO, on p. 9.
For an example of doing this with R, see Wrapping Around an Existing R Function: polychor,
on p. 12.

E	 Write documentation for the extension command, including a SPSS Statistics-style syntax chart
for reference.

Optionally, you can:

E	 Create a custom dialog that generates the command syntax for your extension command. For
an introduction to this feature, see the topic on Creating and Deploying Custom Dialogs for
Extension Commands in Programming and Data Management for SPSS Statistics, available in
PDF from the Articles page at http://www.ibm.com/developerworks/spssdevcentral. Note: The
custom dialog feature requires SPSS Statistics release 17.0 or higher.

E	 Package the XML specification file, implementation code, and any associated custom dialog in an
extension bundle so that your extension command can be easily installed by end users. Extension
bundles require SPSS Statistics version 18 or higher. For details, see the topic on extension
bundles in the SPSS Statistics Help system.

To use an existing extension command

E	 Install the Integration Plug-in for the programming language in which the extension command
is implemented.

E	 Deploy the implementation code and the XML specification of the syntax for the command.

© Copyright IBM Corporation 1989, 2012. 1

http://www.ibm.com/developerworks/spssdevcentral

2

Chapter 1

E	 Write and run SPSS Statistics command syntax in the Syntax Editor according to the diagram for
the extension command, just as you would for any other SPSS Statistics command.

Integration Plug-ins

IBM® SPSS® Statistics Integration Plug-ins allow you to use programming features from other
programming languages within SPSS Statistics. Extension commands can be implemented in the
following languages once the associated Plug-ins are installed: Python, R and Java (requires
SPSS Statistics version 21 or higher).

Information on how to get the Plug-ins for Python and R is available from Core System >
Frequently Asked Questions > How to Get Integration Plug-Ins in the SPSS Statistics Help
system. The Plug-in for Java (requires SPSS Statistics version 21 or higher) is installed with SPSS
Statistics and SPSS Statistics Server and requires no separate installation or configuration.

XML Specification of the Syntax Diagram

The extension schema provides the ability to create an XML representation of the command
syntax diagram for an extension command. The XML representation of the syntax diagram for a
given extension command describes the syntactic structure for running that command. The IBM®
SPSS® Statistics command parser uses this specification to interpret and validate instances of the
command. A copy of the extension schema, extension-1.0.xsd, is installed with SPSS Statistics.
See Extension Schema Element Reference for detailed schema documentation. The following
figure shows a basic outline of the extension schema.
Figure 1-1
Outline of the extension schema

<Command Name="string" Language="Python" | "R" Mode="Source" | "Package">
<Subcommand Name="string" Occurrence="Required" | "Optional"

IsArbitrary="True" | "False" | "Yes" | "No">
<Parameter Name="string" ParameterType="DatasetName" | "Integer" | "IntegerList" | "Keyword" |
"KeywordList" | "LeadingToken" | "Number" | "NumberList" | "QuotedString" | "TokenList" |
"VariableName" | "VariableNameList" | "InputFile" | "OutputFile">
<EnumValue Name="string"/>

</Parameter>
</Subcommand>

</Command>

For example, the syntax diagram for the PLS extension command, available from
http://www.ibm.com/developerworks/spssdevcentral, is:

PLS dependent variable [MLEVEL={N}] [REFERENCE={FIRST }]

{O} {LAST**}
{S} {value }

[dependent variable...]
[BY factor list] [WITH covariate list]

[/ID VARIABLE = variable]

[/MODEL effect [...effect]]

http://www.ibm.com/developerworks/spssdevcentral

3

Introduction to Extension Commands

[/OUTDATASET [CASES=dataset]

[LATENTFACTORS=dataset]

[PREDICTORS=dataset]]

[/CRITERIA LATENTFACTORS={5** }]

{integer}

which is represented by the following XML specification:

<Command xmlns="http://xml.spss.com/extension"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" Name="PLS" Language="Python">
<Subcommand Name="" Occurrence="Required" IsArbitrary="True"/>
<Subcommand Name="ID">

<Parameter Name="VARIABLE" ParameterType="VariableName"/>

</Subcommand>

<Subcommand Name="OUTDATASET">

<Parameter Name="CASES" ParameterType="DatasetName"/>

<Parameter Name="LATENTFACTORS" ParameterType="DatasetName"/>

<Parameter Name="PREDICTORS" ParameterType="DatasetName"/>

</Subcommand>

<Subcommand Name="CRITERIA">

<Parameter Name="LATENTFACTORS" ParameterType="Integer"/>

</Subcommand>

<Subcommand Name="MODEL" IsArbitrary="True"> </Subcommand>

</Command>

� The top-level element, Command, names the command. Subcommands are children of this
element. The Name attribute is required and specifies the command name. For release 16.0.1,
the name must be a single word in upper case with a maximum of eight bytes. For release
17.0 and higher, the name can consist of up to three words separated by spaces, as in MY
EXTENSION COMMAND, and is not case sensitive. Command names are restricted to 7-bit ascii
characters. The Language attribute is optional and specifies the implementation language. The
default is the Python programming language. The choices for Language are Python or R.

� In this example, the first subcommand has an empty string for a name. Because it doesn’t
have a name, it is referred to as the anonymous subcommand. It is specified to be a required
element, and contains the variable list. Its “arbitrary” structure means that elements in the
variable list will simply be passed as a tokenlist to the implementation code, and further
parsing of the list, including the MLEVEL, REFERENCE, BY and WITH (and possibly TO)
keywords will be left entirely to the implementation code.

� The next subcommand, named ID, is optional by default and has a single child element.
Parameters are children of Subcommands. This Parameter element is named VARIABLE and is
of the type VariableName.

� The next subcommand, OUTDATASET, has three child elements. The CASES,
LATENTFACTORS, and PREDICTORS Parameter elements are all of type DatasetName.

� The next subcommand, CRITERIA, has a single child element. The LATENTFACTORS Parameter
element is of type Integer.

� The last subcommand, MODEL, has no child elements. Its “arbitrary” structure means that the
model effects list will simply be passed as a tokenlist to the implementation code, and further
parsing of the model effects will be left entirely to the implementation code.

4

Chapter 1

What do all these ParameterTypes mean?

The ParameterType attribute of a Parameter element determines how SPSS Statistics passes the
information to the implementation code. For example, when the ParameterType is Integer, the
parameter value is passed as an integer number. When ParameterType is Number, the parameter
value is passed as a floating point number. See Extension Schema Element Reference for details.

Naming Conventions and Name Conflicts

� Extension commands take priority over built-in command names. For example, if you
create an extension command named MEANS, the built-in MEANS command will be replaced
by your extension. Likewise, if an abbreviation is used for a built-in command and the
abbreviation matches the name of an extension command, the extension command will be
used (abbreviations are not supported for extension commands).

� To reduce the risk of creating extension command names that conflict with built-in commands
or commands created by other users, you should use two- or three-word command names,
using the first word to specify your organization.

� There are no naming requirements for the file containing the XML specification of the syntax.
For example, the XML specification for the PLS extension command could be contained in
the file plscommand.xml. As with choosing the name of the extension command, take care
when choosing a name to avoid conflicting XML file names. A useful convention is to use
the same name as the Python module, R source file (or package), or Java class file (or JAR
file) that implements the command.

Implementation Code

The extension command mechanism requires that the implementation code (whether written in
Python, R or Java) reside in a function named Run, which is then contained in a Python module, R
source code file (requires IBM® SPSS® Statistics release 18 or later), R package, or Java class
file (which may be a standalone class file or reside in a JAR file). For general reference when
working with Integration Plug-ins, see the Integration-specific documentation that ships with each
plug-in. Issues specific to extension commands are discussed below.

Naming Conventions

The Python module, R source file (or package), or Java class file (or JAR file) containing the Run
function that implements an extension command must adhere to the following naming conventions:
� Python. The Run function must reside in a Python module file with the same name as the

command—for instance, in the Python module file MYCOMMAND.py for an extension
command named MYCOMMAND. The name of the Python module file must be in upper case,
although the command name itself is case insensitive. For multi-word command names,
replace the spaces between words with underscores. For example, for an extension command
with the name MY COMMAND, the associated Python module would be MY_COMMAND.py.

� R. The Run function must reside in an R source file or R package with the same name as the
command—for instance, in a source file named MYRFUNC.R for an extension command
named MYRFUNC. The name of the R source file or package must be in upper case, although
the command name itself is case insensitive. For multi-word command names, replace the

http:MY_COMMAND.py

5

Introduction to Extension Commands

spaces between words with underscores for R source files and periods for R packages. For
example, for an extension command with the name MY RFUNC, the associated R source file
would be named MY_RFUNC.R, whereas an R package that implements the command would
be named MY.RFUNC.R. The source file or package should include any library function
calls required to load R functions used by the code. Note: Use of multi-word command names
for R extension commands requires SPSS Statistics release 17.0.1 or later.

� Java. The Run function must reside in a Java class file or JAR file with the same name as
the command—for instance, in a class file named MYCOMMAND.class for an extension
command named MYCOMMAND. The name of the Java class file or JAR file must be in upper
case, although the command name itself is case insensitive. For multi-word command names,
spaces between words should be replaced with underscores when constructing the name
of the Java class file or JAR file. For example, for an extension command with the name
MY COMMAND, the associated Java class file would be MY_COMMAND.class. For more
information on creating extension commands implemented in Java, see Integration Plug-in
for Java User Guide > Getting Started with the Integration Plug-in for Java in the SPSS
Statistics Help system.

Input from IBM SPSS Statistics

SPSS Statistics parses syntax for the extension command according to the XML representation
of the syntax diagram, then passes the parameters to the implementation code within a BEGIN
PROGRAM—END PROGRAM block of command syntax. Continuing with the example of the PLS
extension command (implemented in Python), when you run the following PLS command syntax

PLS lnsales MLEVEL=S BY type WITH price engine_s horsepow wheelbas width

length curb_wgt fuel_cap mpg

/CRITERIA LATENTFACTORS=5

/OUTDATASET CASES=indvCases LATENTFACTORS=latentFactors

PREDICTORS=indepVars.

it produces and runs, in the background, the following program block (formatted here for
readability)

BEGIN PROGRAM.

import spss

import PLS

PLS.Run({'PLS': {

'': [{'TOKENLIST': ['lnsales', 'MLEVEL', '=', 'S', 'BY', 'type',

'WITH', 'price', 'engine_s', 'horsepow', 'wheelbas',

'width', 'length', 'curb_wgt', 'fuel_cap', 'mpg']}],

'OUTDATASET': [{'CASES': ['INDVCASES']},

{'LATENTFACTORS': ['LATENTFACTORS']},

{'PREDICTORS': ['INDEPVARS']}],

'CRITERIA': [{'LATENTFACTORS': [5]}]}})

END PROGRAM.

The program block attempts to import the PLS module (i.e. a Python module with the same name
as the extension command) and call the module’s Run function, passing the parsed command
syntax as the single argument. As this example illustrates, the argument passed to the Run function
has a nontrivial structure. The extension module, a supplementary module installed with the
IBM® SPSS® Statistics - Integration Plug-in for Python, greatly simplifies the task of argument

6

Chapter 1

parsing for extension commands implemented in Python (see Wrapping Around an Existing
Python Function: PARETO on p. 9 for an example of the approach).

In lieu of using the extension module, you will need to explicitly parse the argument. The
following is a brief summary of the structure for the present example.
� The argument passed to the Run function is a complex dictionary structure whose top-level

key is the command name—in this case, PLS. The next level of nested items corresponds
to the subcommands of the PLS command.

� The first nested item is the string '', which is keyed to a list containing a dictionary that has
the single item TOKENLIST, which in turn is keyed to a list containing the variable list. From
this, the implementation code needs to be able to come away with the information that the
scale variable lnsales is the sole dependent, that type is a factor, and that price, engine_s,
horsepow, wheelbas, width, length, curb_wgt, fuel_cap, and mpg are covariates.

� The next nested item, OUTDATASET, is keyed to a list containing three dictionaries, each of
which contains a single item (corresponding to a keyword of the OUTDATASET subcommand)
keyed to a list containing a single string (corresponding to the value assigned to the keyword
in the PLS syntax above). The implementation code needs to be able to determine that output
variables related to individual cases, latent factors, and predictors be saved to new datasets
indvCases, latentFactors, and indepVars, respectively. These selections will also produce
plots of latent factor scores, latent factor weights, and variable importance to projection
(VIP) by latent factor.

� The last nested item under PLS, CRITERIA, is keyed to a list containing a dictionary that
contains a single item (corresponding to the LATENTFACTORS keyword of the CRITERIA
subcommand) keyed to a list containing a single integer (corresponding to the value assigned
to the keyword in the PLS syntax above). The implementation code needs to determine that a
solution with 5 latent factors should be produced.

For more information, see the topic Examples of Extension Commands in Chapter 2 on p. 9.

Notes

Command syntax errors. Syntax errors—for example, not providing an integer for a parameter
specified as Integer—are handled by SPSS Statistics and stop the module from running, so the
implementation code does not need to handle deviations from the XML syntax diagram.

Generating output. Generating and sending output to SPSS Statistics is handled by the
implementation code. See the Integration-specific documentation that ships with each plug-in.
� For Python, the implementation code is responsible for generating the procedure name

(associated with the extension command) that labels the output in the Viewer. In other words,
unlike built-in SPSS Statistics procedures such as FREQUENCIES, there is no automatic
association of the extension command name with the name that labels output from the
command. Specifically, the procedure name is the argument to the StartProcedure
function.

� For R, the default name associated with output from an extension command is R. For SPSS
Statistics release 18 or later, the name can be customized. For more information, see the
topic R Source File in Chapter 2 on p. 14.

7

Introduction to Extension Commands

Localization. You can localize messages and output produced by the implementation code. Details
on how to do this for Python are provided in Appendix A. For information on localizing extension
commands implemented in R, see the documentation for the IBM® SPSS® Statistics - Integration
Plug-in for R, available from the Help system, once the Plug-in has been installed.

Deploying an Extension Command

Using an extension command requires that IBM® SPSS® Statistics can access both the XML
syntax specification file and the implementation code (Python module, R source file, R package,
Java class file or JAR file). If the extension command is distributed in an extension bundle
(.spe) file, then you can simply install the bundle from Utilities>Extension Bundles>Install
Extension Bundle within SPSS Statistics (extension bundles require SPSS Statistics version 18 or
higher). Otherwise, you will need to manually install the XML syntax specification file and the
implementation code. Both should be placed in the extensions directory, located at the root of the
SPSS Statistics installation directory. For Mac, the installation directory refers to the Contents
directory in the SPSS Statistics application bundle.

Note: For version 18 on Mac, the files can also be placed in /Library/Application
Support/SPSSInc/PASWStatistics/18/extensions. For version 19 and higher on Mac, the files can
also be placed in /Library/Application Support/IBM/SPSS/Statistics/<version>/extensions, where
<version> is the two digit SPSS Statistics version—for example, 21.
� For Windows and UNIX, for release 21 and higher, if you do not have write permissions to

the SPSS Statistics installation directory then you can unzip the contents to the following
general user-writable locations:
Windows 7 and Windows Vista. Unzip the contents to
C:\Users\<user>\AppData\Local\IBM\SPSS\Statistics\<version>\extensions where <user> is
the user name and <version> is the two digit SPSS Statistics version—for example, 21. Note
that you may need to create the directories in the specified path.
Windows XP. Unzip the contents to C:\Documents and Settings\<user>\Local
Settings\Application Data\IBM\SPSS\Statistics\<version>\extensions where <user> is the user
name and <version> is the two digit SPSS Statistics version—for example, 21. Note that you
may need to create the directories in the specified path.
UNIX (including Linux). Unzip the contents to ~/.IBM/SPSS/Statistics/<version>/extensions
where <version> is the two digit SPSS Statistics version—for example, 21. Note that you may
need to create the directories in the specified path.

� For Windows, UNIX and Mac, and for release 18 and higher, if you do not have write
permissions to the SPSS Statistics installation directory or would like to store the XML file
and the implementation code elsewhere, you can specify one or more alternate locations
by defining the SPSS_EXTENSIONS_PATH environment variable. For multiple locations,
separate each with a semicolon on Windows and a colon on UNIX and Mac when specifying
the environment variable. When present, the paths specified in SPSS_EXTENSIONS_PATH
take precedence over the SPSS Statistics installation directory. The extensions subdirectory of
the installation directory is always searched after any locations specified in the environment
variable, followed by the application data directories described above.

8

Chapter 1

� For an extension command implemented in Python, you can always store the associated Python
module to a location on the Python search path (such as the Python site-packages directory),
independent of where you store the XML specification file. The extensions subdirectory and
any other directories specified in SPSS_EXTENSIONS_PATH are automatically added to the
Python search path when SPSS Statistics starts.

� For an extension command implemented in R, the R source file or R package containing
the implementation code should be installed to the directory containing the XML syntax
specification file. R packages can alternatively be installed to the default location for the
associated platform—for example, R_Home/library on Windows, where R_Home is the
installation location of R and library is a subdirectory under that location. For help with
installing R packages, consult the R Installation and Administration guide, distributed with R.

At startup, SPSS Statistics reads the extensions directory and any directories specified in
SPSS_EXTENSIONS_PATH, and registers the extension commands found in those locations. If
you want to load a new extension command without restarting SPSS Statistics you will need to
use the EXTENSION command (see the SPSS Statistics Help system or the Command Syntax
Reference for more information).

Note: If you or your end users will be running an extension command while in distributed mode,
be sure that the extension command files (XML specification and implementation code) and the
relevant SPSS Statistics Integration Plug-In(s) (Python and/or R) are installed to both the client
and server machines.

Enabling Color Coding and Auto-Completion in the Syntax Editor

The XML syntax specification file contains all of the information needed to provide color coding
and auto-completion for your extension command in the Syntax Editor. For SPSS Statistics release
18 and later these features are automatically enabled. To enable these features for release 17, place
a copy of the XML file in the syntax_xml directory—located at the root of the SPSS Statistics
installation directory for Windows, and under the bin subdirectory of the installation directory for
Linux and Mac. The contents of the syntax_xml directory are read when SPSS Statistics starts up.

Chapter

2
Examples of Extension Commands

This section contains examples of extension commands implemented in Python and R. More
examples of extension commands can be found on SPSS community. Additional information on
extension commands can also be found in Programming and Data Management for SPSS Statistics
available in PDF from the Articles page at http://www.ibm.com/developerworks/spssdevcentral. A
tutorial on creating an extension command implemented in R is available from Help>Working
with R, within IBM® SPSS® Statistics, for version 18 and higher, and once the IBM® SPSS®
Statistics - Integration Plug-in for R is installed.

Wrapping Around an Existing Python Function: PARETO

The paretochart.py file, found at http://www.ibm.com/developerworks/spssdevcentral, contains
code for producing a Pareto chart with extra features beyond those in the standard IBM® SPSS®
Statistics Pareto chart. However, it requires the use of Python calls within BEGIN PROGRAM—END
PROGRAM syntax. In order to provide this functionality to users of SPSS Statistics syntax, you can
create an extension command that accepts parsed syntax and passes it to paretochart.py.

Consider the chart function in paretochart.py:

chart(varname, title=None, closeds=True, alpha=.05, totalcategories=None,

template=None)

To start, let’s create the simplest possible extension command syntax — one that simply takes the
name of the variable for which the Pareto chart is created. The SPSS Statistics syntax diagram
could look like:

PARETO VARIABLE=variable-name.

The corresponding XML syntax specification, based on the extension schema, would then be:

<Command xmlns="http://xml.spss.com/extension"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" Name="PARETO">

<Subcommand Name="" Occurrence="Required">

<Parameter Name="VARIABLE" ParameterType="VariableName"/>

</Subcommand>

</Command>

� The Command element names the command PARETO.
� The first Subcommand element has an empty string for a name. It is specified to be a required

element, and contains a single child element. The VARIABLE Parameter element is of type
VariableName.

You would then save this specification to an XML file—for example, PARETO.xml—in the
/extensions directory.

© Copyright IBM Corporation 1989, 2012. 9

http://www.ibm.com/developerworks/spssdevcentral
http://www.ibm.com/developerworks/spssdevcentral
http:paretochart.py
http:alpha=.05

10

Chapter 2

The code for the Python module—which must be named PARETO—that implements the command
is:

"""Pareto Charts Extension Module"""

from paretochart import chart, ParetoAcceptance

from extension import Syntax, Template, processcmd

def Run(args):

"""Execute the PARETO command"""

synObj = Syntax([

Template(kwd="VARIABLE", subc="", var="varname", ktype="existingvarlist")])

processcmd(synObj, args[args.keys()[0]], chart)

� The from...import statements load modules that will do most of the work for us.
Functionality in paretochart creates the Pareto chart. The extension module, a
supplementary module installed with the IBM® SPSS® Statistics - Integration Plug-in for
Python, contains functionality to parse the arguments passed to the Run function and create
the argument list to be sent to the function being wrapped—in this case, the chart function.
It also allows you to specify more validation than is possible in the XML specification of the
extension command. Particularly important is the ability to specify that a variable referenced
in the submitted syntax must already exist in the active dataset.

� The Template class from the extension module is used to specify a keyword. Each
keyword of each subcommand should have an associated instance of the Template class. In
this example, VARIABLE is the only keyword and it belongs to the anonymous subcommand.
The argument kwd to the Template class specifies the name of the keyword.

The argument subc to the Template class specifies the name of the subcommand that

contains the keyword. If the keyword belongs to the anonymous subcommand, the argument

subc can be omitted or set to the empty string as shown here.

The argument var specifies the name of the Python variable that receives the value specified

for the keyword. In this case the Python variable varname will contain the value specified for

the VARIABLE keyword. If var is omitted, the lowercase value of kwd is used.
The argument ktype specifies the type of keyword, such as whether the keyword specifies a
variable name, a string, or a floating point number. In this example, the keyword defines a
variable name, representing a variable that must exist in the active dataset, and is specified
as the type existingvarlist.

� The Syntax class from the extension module validates the syntax specified by the
Template objects. You instantiate the Syntax class with a sequence of one or more
Template objects. In this example, there is only one Template object so the argument to
the Syntax class is a list with a single element.

� The processcmd function from the extension module parses the values passed to the Run
function and executes the implementation function.

The first argument to the processcmd function is the Syntax object for the command, created

from the Syntax class.

1 1

Examples of Extension Commands

The value of the second argument must be the top-level item in the dictionary passed to
the Run function. This is given by the expression args[args.keys()[0]]. It could
alternatively be written args["PARETO"].
The third argument to processcmd is the name of the implementation function—in this case,
the chart function, from the paretochart module, that produces the Pareto chart. The
values of the keywords specified by the Template objects are passed to the implementation
function as a set of keyword arguments. In the present example, the chart function
will be called with the following signature: chart(varname=<value of VARIABLE
keyword>).
Note: If a Python exception is raised in the implementation function, the Python traceback is
suppressed, but the error message is displayed.

You can obtain additional help for the extension module by including the statement
help(extension) in a program block, once you’ve imported the module, or by reading the
detailed comments in the module.

Expanding the Syntax Diagram

With a simple extension and implementation code under your belt, now consider expanding the
options in the PARETO command. For example, the following chart adds the ability to specify a
title, a chart template, and alpha level for confidence intervals:

PARETO VARIABLE=variable-name

/GRAPHSPEC TITLE='title-string' TEMPLATE='filename'

/CRITERIA ALPHA=value.

The corresponding XML syntax specification based on the extension schema, would then be:

<Command xmlns="http://xml.spss.com/extension"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" Name="PARETO">
<Subcommand Name="" Occurrence="Required">

<Parameter Name="VARIABLE" ParameterType="VariableName"/>

</Subcommand>

<Subcommand Name="GRAPHSPEC">

<Parameter Name="TITLE" ParameterType="QuotedString"/>
<Parameter Name="TEMPLATE" ParameterType="InputFile"/>

</Subcommand>

<Subcommand Name="CRITERIA">

<Parameter Name="ALPHA" ParameterType="Number"/>
</Subcommand>

</Command>

The code for the Python module that implements the command is:

"""Pareto Charts Extension Module"""

from paretochart import chart, ParetoAcceptance
from extension import Syntax, Template, processcmd

def Run(args):

12

Chapter 2

"""Execute the PARETO command"""

synObj = Syntax([

Template(kwd="VARIABLE", subc="", var="varname", ktype="existingvarlist"),

Template("TITLE", subc="GRAPHSPEC", ktype="literal"),

Template("TEMPLATE", subc="GRAPHSPEC", ktype="literal"),

Template("ALPHA", subc="CRITERIA", ktype="float", vallist=[0,1])])

processcmd(synObj, args[args.keys()[0]], chart)

There is a Template object for each of the new keywords in the syntax diagram.
� The TITLE and TEMPLATE keywords on the GRAPHSPEC subcommand are of literal type,

since you want them to retain any capitalization; the str keyword type converts letters
to lower case.

� The ALPHA keyword on the CRITERIA subcommand is a float; moreover, it takes values in
the range [0,1].

Wrapping Around an Existing R Function: polychor

Using the extension command mechanism you can wrap any R function. As an example, we’ll
wrap the polychor function from the polycor package (available from any CRAN mirror site)
in an extension command named RPOLYCHOR. In its simplest usage, the function computes the
correlation between two ordinal variables. The function has the following signature:

polychor(x,y,ML=FALSE,control=list(),std.err=FALSE,maxcor=.9999)

To simplify the associated syntax, we’ll omit all parameters other than the two variables x and y
and the maxcor parameter and consider the case where x and y are numeric variables. The IBM®
SPSS® Statistics syntax diagram could look like:

RPOLYCHOR VARIABLES=varlist

/OPTIONS MAXCOR = {.9999**}

{value }

The corresponding XML specification, based on the extension schema, would then be:

<Command xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="extension.xsd" Name="RPOLYCHOR" Language="R">

<Subcommand Name="" IsArbitrary="False" Occurrence="Required">

<Parameter Name="VARIABLES" ParameterType="VariableNameList"/>

</Subcommand>

<Subcommand Name="OPTIONS">

<Parameter Name="MAXCOR" ParameterType="Number"/>

</Subcommand>

</Command>

� The Command element names the command RPOLYCHOR. The Language attribute specifies R
as the implementation language.

13

Examples of Extension Commands

� The VARIABLES keyword, associated with the anonymous subcommand, is used to specify
the input variables. It has a parameter type of VariableNameList. Values specified for
VariableNameList parameters are checked to be sure they represent syntactically valid SPSS
Statistics variable names (the existence of the variables is not checked).

� The OPTIONS Subcommand element contains a Parameter element for the value of maxcor.
The parameter type is specified as Number, which means that the value can be a number,
possibly in scientific notation using e or E.

You would then save this specification to an XML file—for example, RPOLYCHOR.xml—in the
/extensions directory.

Implementation Code

When wrapping an R function in an extension command, different architectures for the
implementation code are available and depend on your version of IBM® SPSS® Statistics. For
SPSS Statistics version 18 and higher it is recommended to use the R source file approach.
� R source file. The implementation code is contained in an R source file. This approach requires

that you and your end users have R and the IBM® SPSS® Statistics - Integration Plug-in for
R installed on machines that will run the extension command, and is only available for SPSS
Statistics version 18 and higher. This is by far the simplest approach and is the recommended
method for users who have SPSS Statistics version 18 or higher. An example of this approach
is described in R Source File on p. 14.

� Wrapping in python. You can wrap the code that implements the R function in Python. This is
the recommended approach for users who do not have SPSS Statistics version 18 or higher or
who need to customize the output with Python scripts. This approach requires that you and
your end users have R, Python, the Integration Plug-in for R, and the IBM® SPSS® Statistics
- Integration Plug-in for Python installed on machines that will run the extension command.
Note: Full support for this approach requires SPSS Statistics version 17.0.1 or higher.

� R package. The implementation code is contained in an R package. This approach is the
most involved because it requires creating and installing R packages, but it allows you to
potentially distribute your package through the Comprehensive R Archive Network (CRAN).
This approach requires that you and your end users have R and the Integration Plug-in for R
installed on machines that will run the extension command. For users with SPSS Statistics
version 18 or higher, the approach for creating the implementation code is the same as for the
R source file approach but requires the further step of creating an R package containing the
implementation code. If you are interested in this approach but are not familiar with creating
R packages, you may consider creating a skeleton package using the R package.skeleton
function (distributed with R). If you and any end users do not have SPSS Statistics version 18
or higher, then you will have to manually parse the argument passed to the Run function. For
more information, see the topic Manually Parsing on p. 18.

It is also possible to generate an R program directly from a custom dialog, bypassing the extension
method entirely. However, the entire program will then appear in the log file, and extra care must
be taken with long lines of code. For an example of this approach, see the Rboxplot example,
available from the SPSS community.

14

Chapter 2

R Source File

To wrap an R function, you create an R source file containing a Run function that parses and
validates the syntax specified by the end user, and another function—called by Run—that actually
implements the command. Following the example of the RPOLYCHOR extension command, the
associated Run function is:

Run<-function(args){

args <- args[[2]]

oobj<-spsspkg.Syntax(templ=list(

spsspkg.Template(kwd="VARIABLES",subc="",ktype="existingvarlist",

var="vars",islist=TRUE),

spsspkg.Template(kwd="MAXCOR",subc="OPTIONS",ktype="float",var="maxcor")

))

res <- spsspkg.processcmd(oobj,args,"rpolycor")

}

� IBM® SPSS® Statistics parses the command syntax entered by the user and passes the
specified values to the Run function in a single argument—args in this example. The
argument is a list structure whose first element is the command name and whose second
element is a set of nested lists containing the values specified by the user.

� The Run function contains calls to the spsspkg.Syntax, spsspkg.Template, and
spsspkg.processcmd functions, which are designed to work together.
spsspkg.Template specifies the details needed to process a specified keyword in the syntax
for an extension command.
spsspkg.Syntax validates the values passed to the Run function according to the templates
specified for the keywords.
spsspkg.processcmd parses the values passed to the Run function and calls the function
that will actually implement the command—in this example, the function rpolycor (discussed
below) which resides in the same source file as the Run function.
Note: Complete documentation for these functions is available from the SPSS Statistics
Help system.

� You call spsspkg.Template once for each keyword supported by the extension command.
In this example, the extension command contains the two keywords VARIABLES and MAXCOR,
so spsspkg.Template is called twice. The function returns an object, that we’ll refer to as
a template object, for use with the spsspkg.Syntax function.

� The argument kwd to spsspkg.Template specifies the name of the keyword (in uppercase)
for which the template is being defined.

� The argument subc to spsspkg.Template specifies the name of the subcommand (in
uppercase) that contains the keyword. If the keyword belongs to the anonymous subcommand,
the argument subc can be omitted or set to the empty string as shown here.

� The argument ktype to spsspkg.Template specifies the type of keyword, such as whether
the keyword specifies a variable name, a string, or a floating point number.

� The value existingvarlist for ktype specifies a list of variable names that are validated against
the variables in the active dataset. It is used for the VARIABLES keyword that specifies the
variables for the analysis.

� The value float for ktype specifies a real number. It is used for the MAXCOR keyword.

15

Examples of Extension Commands

� The argument var to spsspkg.Template specifies the name of an R variable that will be set
to the value specified for the keyword. This variable will be passed to the implementation
function by the spsspkg.processcmd function.

� The optional argument islist to spsspkg.Template is a boolean (TRUE or FALSE)
specifying whether the keyword contains a list of values. The default is FALSE. The keyword
VARIABLES in this example is a list of variable names, so it should be specified with
islist=TRUE.

� Once you have specified the templates for each of the keywords, you call spsspkg.Syntax
with a list of the associated template objects. The returned value from spsspkg.Syntax is
passed to the spsspkg.processcmd function, which has the following required arguments:
The first argument is the value returned from the spsspkg.Syntax function.
The second argument is the list structure containing the values specified by the user in the
submitted syntax.
The third argument is the name of the function that will actually implement the extension
command—in this example, the function rpolycor.

rpolycor<- function(vars,maxcor=0.9999){

library(polycor)

x <- vars[[1]]

y <- vars[[2]]

Get the data from the active dataset and run the analysis

data <- spssdata.GetDataFromSPSS(variables=c(x,y),missingValueToNA=TRUE)

result <- polychor(data[[x]],data[[y]],maxcor=maxcor)

Create output to display the result in the Viewer

spsspkg.StartProcedure("Polychoric Correlation")

spsspivottable.Display(result,title="Correlation",

rowlabels=c(x),

collabels=c(y),

format=formatSpec.Correlation)

spsspkg.EndProcedure()

}

� The spsspkg.processcmd function calls the specified implementation function—in this
case, rpolycor—with a set of named arguments, one for each template object. The names
of the arguments are the values of the var arguments specified for the associated template
objects and the values of the arguments are the values of the associated keywords from the
syntax specified by the end user.

� The implementation function contains the library statement for the R polycor package.
� The spssdata.GetDataFromSPSS function reads the case data for the two specified

variables from the active dataset. missingValueToNA=TRUE specifies that missing values
of numeric variables are converted to the R NA value (by default, they are converted to the R
NaN value). The data are then passed to the R polychor function to compute the correlation.

� You group output under a common heading using a
spsspkg.StartProcedure-spsspkg.EndProcedure block. The argument to
spsspkg.StartProcedure specifies the name that appears in the outline pane of
the Viewer associated with the output.

16

Chapter 2

� The spsspivottable.Display function creates a pivot table that is displayed in the SPSS
Statistics Viewer. The first argument is the data to be displayed as a pivot table. It can be a
data frame, matrix, table, or any R object that can be converted to a data frame.

Notes

� To use the R source file method, you will need to specify Language="R" in the Command
element of the XML specification file.

� Use of the argument missingValueToNA to spssdata.GetDataFromSPSS
requires SPSS Statistics version 18 or higher. For earlier versions, use the statement
is.na(data)<-is.na(data) following the call to spssdata.GetDataFromSPSS to
convert missing values of numeric variables to the R NA value, as in:
data <- spssdata.GetDataFromSPSS()

is.na(data)<-is.na(data)

� Use of an spsspkg.StartProcedure-spsspkg.EndProcedure block requires SPSS
Statistics version 18 or higher.

Wrapping in Python

To wrap the implementation code for an R function in Python, you create a Python function that
generates the necessary R code and submits it to IBM® SPSS® Statistics in a BEGIN PROGRAM
R—END PROGRAM block. Following the example of the RPOLYCHOR extension command, the code
for the Python module—which must be named RPOLYCHOR—that implements the command,
including all necessary import statements, is:

import spss, spssaux

from extension import Template, Syntax, processcmd

def	 Run(args):

args = args[args.keys()[0]]

oobj = Syntax([

Template("VARIABLES",subc="",ktype="existingvarlist",var="vars",islist=True),

Template("MAXCOR",subc="OPTIONS",ktype="float",var="maxcor")])

processcmd(oobj, args, rpolychor, vardict=spssaux.VariableDict())

def	 rpolychor(vars, maxcor=0.9999):

varX = vars[0]

varY = vars[1]

pgm = r"""BEGIN PROGRAM R.

library(polycor)

data <- spssdata.GetDataFromSPSS(variables=c("%(varX)s","%(varY)s"),missingValueToNA=TRUE)

result <- polychor(data[["%(varX)s"]],data[["%(varY)s"]],maxcor=%(maxcor)s)

Create output to display the result in the Viewer

spsspkg.StartProcedure("Polychoric Correlation")

spsspivottable.Display(result,title="Correlation",

rowlabels=c("%(varX)s"),

collabels=c("%(varY)s"),

format=formatSpec.Correlation)

spsspkg.EndProcedure()

END PROGRAM.

""" % locals()

spss.Submit(pgm)

17

Examples of Extension Commands

� The module consists of the Run function that parses the values passed from SPSS Statistics
and a Python function named rpolychor that generates the BEGIN PROGRAM R—END
PROGRAM block that calls the R polychor function.

� The Run function uses the Python extension module, a supplementary module installed with
the IBM® SPSS® Statistics - Integration Plug-in for Python, to parse the arguments passed
from SPSS Statistics and to pass those arguments to the rpolychor function. For more
information, see the topic Wrapping Around an Existing Python Function: PARETO on p. 9.

� The rpolychor function generates a BEGIN PROGRAM R—END PROGRAM block of command
syntax containing all of the R code needed to get the data from SPSS Statistics, call the R
polychor function, and display the results in a pivot table in the SPSS Statistics Viewer. The
block is submitted to SPSS Statistics with the spss.Submit function.

As an alternative to directly submitting the BEGIN PROGRAM R—END PROGRAM block, you can
write the block to an external file and use the INSERT command to run the syntax. Writing the
block to an external file has the benefit of saving the generated R code for future use. The following
code—which replaces spss.Submit(pgm) in the previous example—shows how to do this in
the case that the block is written to a file in the directory currently designated as the temporary
directory. To use this code, you will also have to import the tempfile, os, and codecs modules.

cmdfile = (tempfile.gettempdir() + os.sep + "pgm.R").replace("\\", "/")

f = codecs.open(cmdfile, "wb", encoding="utf_8_sig")

f.write(pgm)

f.close()

spss.Submit("INSERT FILE='%s'" % cmdfile)

� Setting encoding="utf_8_sig" means that the file is written in UTF-8 with a byte order
mark (BOM). This ensures that SPSS Statistics will properly handle any extended ascii
characters in the file when the file is read with the INSERT command.

As a useful convention, you may want to consider adding a SAVE subcommand with a
PROGRAMFILE keyword to your extension command to let the user decide whether to save the
generated R code. For an example of this approach, see the SPSSINC HETCOR command,
installed with IBM® SPSS® Statistics - Essentials for R.

Notes

� In the specification of the BEGIN PROGRAM R block, use of the argument
missingValueToNA to spssdata.GetDataFromSPSS requires SPSS Statistics version 18
or higher. For earlier versions, use the statement is.na(data)<-is.na(data) following
the call to spssdata.GetDataFromSPSS to convert missing values of numeric variables
to the R NA value, as in:
data <- spssdata.GetDataFromSPSS()

is.na(data)<-is.na(data)

� In the specification of the BEGIN PROGRAM R block, use of an
spsspkg.StartProcedure-spsspkg.EndProcedure block requires SPSS Statistics
version 18 or higher.

18

Chapter 2

Manually Parsing

In the case that you are using the R package approach and you do not have IBM® SPSS®
Statistics version 18 or higher, you will need to manually parse the argument passed to the Run
function. Following the example of the RPOLYCHOR extension command, consider the following
command syntax entered by a user:

RPOLYCHOR VARIABLES=var1 var2 /OPTIONS MAXCOR=.999.

The argument passed to the R Run function is a set of nested lists. When rendered with the R
print command from within the Run function, the structure is as follows:

[[1]]

[1] "RPOLYCHOR"

[[2]]

[[2]]$` `

[[2]]$` `[[1]]

[[2]]$` `[[1]]$VARIABLES

[[2]]$` `[[1]]$VARIABLES[[1]]

[1] "var1"

[[2]]$` `[[1]]$VARIABLES[[2]]

[1] "var2"

[[2]]$OPTIONS

[[2]]$OPTIONS[[1]]

[[2]]$OPTIONS[[1]]$MAXCOR

[[2]]$OPTIONS[[1]]$MAXCOR[[1]]

[1] 0.999

In deciphering this structure it may be useful to notice that it can be generated from the following
R command:

list("RPOLYCHOR",

list(' '=list(list(VARIABLES=list("var1","var2"))),

OPTIONS=list(list(MAXCOR=list(0.999)))

)

)

� The argument passed to the Run function is a list whose first element is the command name
and whose second element is a list containing all of the specifications provided by the user in
the submitted command syntax.

� Each subcommand is represented as an element of the inner list, as shown for the anonymous
subcommand (represented by the name ' ') and the OPTIONS subcommand. The parameter
specifications for each subcommand are contained in a list structure.

19

Examples of Extension Commands

The R code for a Run function that implements the RPOLYCHOR command, including the library
statement for the polycor package, is:

.packageName <- "RPOLYCHOR"

Run <- function(args){

library(polycor)

Parse the arguments

maxcor_parm <- args[[2]]$OPTIONS[[1]]$MAXCOR[[1]]

x <- args[[2]]$' '[[1]]$VARIABLES[[1]]

y <- args[[2]]$' '[[1]]$VARIABLES[[2]]

Set default value of maxcor

maxcor <- 0.9999

if	 (!is.null(maxcor_parm)) maxcor <- as.double(maxcor_parm)

Get the data from the active dataset and run the analysis

data <- spssdata.GetDataFromSPSS(variables=c(x,y))

result <- polychor(data[[x]],data[[y]],maxcor=maxcor)

Create output to display the result in the Viewer

spsspivottable.Display(result,title="Polychoric Correlation",

rowlabels=c(x),

collabels=c(y),

format=formatSpec.Correlation)

}

� The statements that parse the arguments pick out the needed information (the names of the
variables and the optional value of maxcor) using the known structure of the set of nested lists.

� The spssdata.GetDataFromSPSS function reads the case data for the two specified
variables from the active dataset.

� The spsspivottable.Display function creates a pivot table that is displayed in the SPSS
Statistics Viewer.

Chapter

3
Extension Schema Element Reference

This section provides a reference for all elements in the extension schema. Each topic lists the
valid attributes for an element and its parent and child elements.

Command Element
The top-level element, also known as the document or root element. This element contains a
complete command syntax specification of an extension command.
Table 3-1
Attributes for Command

Attribute Use Description Valid Values
Language optional The programming

language in which
the command is
implemented. Defaults
to Python.

Python
R
Java

Mode optional Specifies whether the
implementation code
is contained in an R
source file or an R
package. Only applies
for Language=“R”.
Defaults to Source.

Source
Package

Name required The name of the
command. For release
16.0.1, the name must be
a single word in upper
case with a maximum of
8 bytes. For release 17.0
and higher, the name can
consist of up to three
words (case insensitive)
separated by spaces.
Command names are
restricted to 7-bit
ascii characters. For
multi-word command
names, ensure that the
first word as well as
the first two words do
not match the name of
another command. For
example, do not use
the name CMD NEW
if there is a command
named CMD. Likewise,
do not use the name MY
CMD NEW if there is
a command named MY
CMD.

any

© Copyright IBM Corporation 1989, 2012. 20

21

Extension Schema Element Reference

XML Representation

<xs:element name="Command" type="command-content">

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="Subcommand"></xs:element>
</xs:sequence>
<xs:attribute name="Name" use="required"></xs:attribute>
<xs:attribute name="Language">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="Python"></xs:enumeration>
<xs:enumeration value="R"></xs:enumeration>
<xs:enumeration value="Java"></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:attribute>

<xs:attribute name="Mode">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="Source"></xs:enumeration>
<xs:enumeration value="Package"></xs:enumeration>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:element>

Child Elements

Subcommand Element

Parameter Element
A parameter controls a specific piece of a command’s functionality. There are many types of
parameters so that the Parameter element is flexible enough to cover the different types of
functionality provided by parameters. Subcommands contain zero or more parameters.
Table 3-2
Attributes for Parameter
Attribute Use Description Valid Values
Name required The name of the

parameter. Parameter
names are restricted to
7-bit ascii characters
and must start with
a letter or one of the
characters @, #, or $.
Subsequent characters
can be any combination
of letters, numbers,
nonpunctuation
characters, and a period
(.).

any

ParameterType required DatasetName. Specifies
a dataset name. The
value will be checked for
syntax correctness (same

22

Chapter 3

Attribute Use Description Valid Values
rules as for variable
names) but not existence.
The case is preserved
when passed to the Run
function.

Integer. A number
with no fractional
part after conversion.
Optionally, you can
specify a set of allowed
keyword values for an
Integer parameter, using
EnumValue elements.

IntegerList. A blank or
comma separated list of
Integer types.

Keyword. Specifies
a value that adheres
to the same rules as
the Name attribute of
a Parameter element.
The value is passed
in upper case to the
Run function. You can
specify the set of allowed
values using EnumValue
elements. Keyword
type parameters
must be assigned
values. To specify a
keyword without an
associated value, use the
LeadingToken type.

KeywordList. Specifies
a comma or blank
separated list of values
that adhere to the same
rules as the Name
attribute of a Parameter
element. To specify a
list of values not bound
by these rules, use the
TokenList type. You
can specify the set of
allowed values using
EnumValue elements.

LeadingToken. Specifies
a parameter that has
a name (given by the
Name attribute of the
Parameter element) but
no associated value. The
name is passed in upper
case to the Run function.

23

Extension Schema Element Reference

Attribute Use Description Valid Values

Number. A number,
possibly in scientific
notation using e or E.
Optionally, you can
specify a set of allowed
keyword values for
a Number parameter,
using EnumValue
elements.

NumberList. A blank or
comma separated list of
Number types.

QuotedString. A string
enclosed in single or
double quotes. The
case is preserved when
passed to the Run
function. Optionally,
you can specify a set
of allowed keyword
values (unquoted) for a
QuotedString parameter,
using EnumValue
elements.

TokenList. Specifies
a comma or blank
separated list of values.
Case is preserved when
values are passed to
the Run function. The
TokenList type is similar
to the KeywordList type
but TokenList values are
not bound by the rules
required of KeywordList
values.

VariableName. Specifies
a variable name. The
value will be checked for
syntax correctness (see
the rules for variable
names in the Command
Syntax Reference) but
not existence. The case
is preserved when passed
to the Run function.

VariableNameList.
Specifies a list of
variable names. Each
name in the list will
be checked for syntax
correctness but not
existence. Case is
preserved when values
are passed to the Run
function. The TO and

24

Chapter 3

Attribute Use Description Valid Values
ALL keywords are not
supported.

InputFile. A file
specification for an
input file. The specified
file must exist. The case
is preserved when passed
to the Run function.

OutputFile. A file
specification for an
output file. The specified
directory path must exist
and either the specified
file does not exist or,
if it exists, it must be
writable. The case is
preserved when passed
to the Run function.

XML Representation

<xs:element name="Parameter" type="parameter-content">
<xs:sequence maxOccurs="unbounded" minOccurs="0">

<xs:element name="EnumValue"></xs:element>
</xs:sequence>
<xs:attribute name="Name" use="required"></xs:attribute>
<xs:attribute name="ParameterType" use="required">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="DatasetName"></xs:enumeration>
<xs:enumeration value="Integer"></xs:enumeration>
<xs:enumeration value="IntegerList"></xs:enumeration>
<xs:enumeration value="Keyword"></xs:enumeration>
<xs:enumeration value="KeywordList"></xs:enumeration>
<xs:enumeration value="LeadingToken"></xs:enumeration>
<xs:enumeration value="Number"></xs:enumeration>
<xs:enumeration value="NumberList"></xs:enumeration>
<xs:enumeration value="QuotedString"></xs:enumeration>
<xs:enumeration value="TokenList"></xs:enumeration>
<xs:enumeration value="VariableName"></xs:enumeration>
<xs:enumeration value="VariableNameList"></xs:enumeration>
<xs:enumeration value="InputFile"></xs:enumeration>
<xs:enumeration value="OutputFile"></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:element>

Parent Elements

Subcommand Element

25

Extension Schema Element Reference

Child Elements

EnumValue Element

EnumValue Element

EnumValue is used to enumerate a set of allowed values. EnumValue elements are ignored
except for Keyword, KeywordList, Number, Integer, and QuotedString parameters. When used
with Keyword or KeywordList parameters, the specified EnumValue elements represent the
complete set of allowed values. When used with Number, Integer, or QuotedString parameters, the
specified EnumValue elements represent a set of valid keywords in addition to the specified type.
For example, the value AUTO might be specified as an allowed keyword value for an Integer
parameter. The parameter can then be specified as an integer or the unquoted string AUTO.

Table 3-3
Attributes for EnumValue

Attribute Use Description Valid Values
Name required The enumerated value.

Case is ignored.
any

XML Representation

<xs:element name="EnumValue">

<xs:attribute name="Name" use="required"></xs:attribute>

</xs:element>

Parent Elements

Parameter Element

Subcommand Element

Subcommands divide a command’s functionality into distinct groups. Typical subcommands
include SAVE for specifying variables to be saved to the active dataset, PRINT for specifying
tabular output, and PLOT for specifying chart output. A subcommand can only be specified once
per command. The name of a subcommand must be preceded by a forward slash when specified
in command syntax.

Table 3-4
Attributes for Subcommand

Attribute Use Description Valid Values
IsArbitrary optional Allows arbitrary tokens

on the subcommand.
This is useful, for
example, for specifying
variable lists and model
effect lists.

True.

False.

Yes. Equivalent to True.

No. Equivalent to False.

26

Chapter 3

Attribute Use Description Valid Values
Name required The name of the

subcommand.
Subcommand names
are restricted to 7-bit
ascii characters and start
with a letter or one of
the characters @, #, or
$. Subsequent characters
can be any combination
of letters, numbers,
nonpunctuation
characters, and a
period (.). To specify
the anonymous
subcommand, use
Name=“”.

any

Occurrence optional Specifies whether the
subcommand must be
included in a syntax job
for the command to run.

Required
Optional

XML Representation

<xs:element name="Subcommand" type="subcommand-content">
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="Parameter"></xs:element>
</xs:sequence>
<xs:attribute name="Name" use="required"></xs:attribute>
<xs:attribute name="Occurrence">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="Required"></xs:enumeration>

<xs:enumeration value="Optional"></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:attribute>

<xs:attribute name="IsArbitrary">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="True"></xs:enumeration>

<xs:enumeration value="False"></xs:enumeration>

<xs:enumeration value="Yes"></xs:enumeration>

<xs:enumeration value="No"></xs:enumeration>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:element>

Parent Elements

Command Element

Child Elements

Parameter Element

27

Extension Schema Element Reference

Working with Arbitrary Tokens

TokenList parameter types and Subcommand elements with IsArbitrary=True consist of arbitrary
tokens, such as character strings, literals (strings delimited by single or double quotes), and
operators like ‘>’. Typical scenarios where arbitrary tokens are required include variable lists that
may contain BY or WITH specifications and model effects lists. For example, a subcommand that
allows arbitrary tokens for specifying model interaction effects might be given as:

/MODEL var1*var2(var3)

When parsed, this results in the following list of six tokens passed to the Run function of the
implementation code.

['var1','*','var2','(','var3',')']

Likewise, an anonymous subcommand that allows arbitrary tokens to specify variables with
optional BY or WITH keywords might be specified as:

DepVar BY A B WITH X Y

When parsed, this results in the following list of seven tokens passed to the Run function of
the implementation code.

['DepVar','BY','A','B','WITH','X','Y']

When working with arbitrary tokens you’ll want to test the various forms of input that your
implementation function will need to handle, since the tokens that result from the specified input
may not always be what you expect. For example, a TokenList parameter named TOKENS might
be specified as:

TOKENS = 1a 2b

When parsed, this results in the following list of four tokens passed to the Run function of the
implementation code.

['1','a','2','b']

The result reflects the standard way that IBM® SPSS® Statistics tokenizes command syntax. In
particular, when a set of digits precedes a set of characters, the digits are treated as a separate
token. You can force a set of characters to be passed as a single token by enclosing them in quotes.
For example, specifying TOKENS = '1a' '2b' results in the token list ['1a','2b']. The
same applies if you need to specify multi-word phrases and have each phrase passed as a single
token. For example, TOKENS = 'two words' results in the single token 'two words'.

28

Chapter 3

Examples

Using the Keyword Type

The Keyword type is used to specify a parameter that takes a single value. As an example, consider
an OPTIONS subcommand with a parameter for controlling missing values, and represented
in the syntax diagram as:

/OPTIONS MISSING={PAIRWISE}

{LISTWISE}

The specification of MISSING is best handled with a Keyword type parameter. The XML syntax
specification for the OPTIONS subcommand is:

<Subcommand Name="OPTIONS">
<Parameter Name="MISSING" ParameterType="Keyword">

<EnumValue Name="PAIRWISE"/>

<EnumValue Name="LISTWISE"/>

</Parameter>

</Subcommand>

An example of command syntax containing the OPTIONS subcommand is:

/OPTIONS MISSING=LISTWISE

The Keyword type always requires the parameter name, followed by an equals sign, followed by
a single value.

Using the KeywordList Type

The KeywordList type is used to specify a parameter that can take on multiple values. As an
example, consider an OPTIONS subcommand with a parameter for specifying one or more file
types from a fixed set, and represented in the syntax diagram as:

/OPTIONS FILETYPES=[SAV SAS STATA]

The specification of FILETYPES is best handled with a KeywordList type parameter. The XML
syntax specification for the OPTIONS subcommand is:

<Subcommand Name="OPTIONS">
<Parameter Name="FILETYPES" ParameterType="KeywordList">

<EnumValue Name="SAV"/>

<EnumValue Name="SAS"/>

<EnumValue Name="STATA"/>

</Parameter>

</Subcommand>

An example of command syntax containing the OPTIONS subcommand is:

/OPTIONS FILETYPES=SAV SAS

The KeywordList type always requires the parameter name, followed by an equals sign, followed by
one or more values.

29

Extension Schema Element Reference

Using the LeadingToken Type

The LeadingToken type is used to specify a parameter that has a name but no associated value. As
an example, consider a PLOT subcommand for specifying types of plots to include in output, and
represented in the syntax diagram as:

/PLOT OBSERVED FORECAST FIT

The specification of PLOT is best handled with a set of LeadingToken type parameters. The XML
syntax specification for the PLOT subcommand is:

<Subcommand Name="PLOT">
<Parameter Name="OBSERVED" ParameterType="LeadingToken"/>
<Parameter Name="FORECAST" ParameterType="LeadingToken"/>
<Parameter Name="FIT" ParameterType="LeadingToken"/>

</Subcommand>

An example of command syntax containing the PLOT subcommand is:

/PLOT OBSERVED FIT

Using the TokenList Type

The TokenList type is used to specify a parameter that can take on multiple values. It is similar to
the KeywordList type but TokenList values are not bound by the rules required of KeywordList values.
As an example, consider a MODEL subcommand with a parameter for specifying model interaction
effects, and represented in the syntax diagram as:

/MODEL EFFECTS=effect-list

The specification of the effects list is handled with a TokenList type parameter. The XML syntax
specification for the MODEL subcommand is:

<Subcommand Name="MODEL">
<Parameter Name="EFFECTS" ParameterType="TokenList"/>

</Subcommand>

An example of command syntax containing the MODEL subcommand is:

/MODEL EFFECTS=A*B C(D)

Appendix

A
Localizing Extension Commands
Implemented in Python

This section assumes that the reader is familiar with the IBM® SPSS® Statistics extension
mechanism and the classes and functions in the Python extension module.

Extension commands implemented in Python can be enabled for translation using standard
Python tools and the classes and functions in version 1.4.0 or later of the extension module, a
supplementary module installed with the IBM® SPSS® Statistics - Integration Plug-in for Python.
Version 1.4.0 or higher of the extension module is included with version 19 or higher of the
Integration Plug-in for Python. It can also be downloaded from SPSS community and used with
versions 16-18. Extension command code modified for translation as described here will not fail
with older versions of the extension module, but the output will not be translated.

The localization process consists of the following steps:

E	 Modifying the Python implementation code to identify translatable strings

E	 Extracting translatable text from the implementation code using standard Python tools

E	 Preparing a translated file of strings for each target language

E	 Installing the translation files along with the extension command

Notes

� When running an extension command from within SPSS Statistics, the language for extension
command output will be automatically synchronized with the SPSS Statistics output language
(OLANG). When running an extension command from an external Python process, such as a
Python IDE, you can set the output language by submitting a SET OLANG command when
SPSS Statistics is started. If no translation for an item is available for the output language, the
untranslated string will be used.

� Messages produced by the extension module, such as error messages for violation
of the specifications in the Syntax definition, are automatically produced in the current
output language. Exceptions raised in the extension command implementation code are
automatically converted to a Warnings pivot table.

� Translation of dialog boxes built with the Custom Dialog Builder is a separate process, but
translators should ensure that the dialog and extension command translations are consistent.

Modifying the Python code

First, ensure that the text to be translated is in a reasonable form for translation.

© Copyright IBM Corporation 1989, 2012. 30

31

Localizing Extension Commands Implemented in Python

� Do not build up text by combining fragments of text in code. This makes it impossible to
rearrange the text according to the grammar of the target languages and makes it difficult for
translators to understand the context of the strings.

� Avoid using multiple parameters in a string. Translators may need to change the parameter
order.

� Avoid the use of abbreviations and colloquialisms that are difficult to translate.

Enclose each translatable string in a call to the underscore function "_". For example:

_("File not found: %s") % filespec

The _ function will fetch the translation, if available, when the statement containing the string is
executed. The following limitations apply:
� Never pass an empty string as the argument to _, i.e., _(""). This will damage the

translation mechanism.

� Do not use the underscore function in static text such as class variables. The _ function is

defined dynamically.
� The _ function, as defined in the extension module, always returns Unicode text even if

IBM® SPSS® Statistics is running in code page mode. If there are text parameters in the
string as in the example above, the parameter should be in Unicode. The automatic conversion
used in the parameter substitution logic will fail if the parameter text contains any extended
characters. One way to resolve this is as follows, assuming that the locale module has
been imported.

if	 not isinstance(filespec, unicode):

filespec = unicode(filespec, locale.getlocale()[1])

_("File not found: %s") % filespec

Note: There is a conflict between the definition of the _ function as used by the Python
modules (pygettext and gettext) that handle translations, and the automatic assignment of
interactively generated expression values to the variable _. In order to resolve this, the translation
initialization code in the extension module disables this assignment.

For users with IBM SPSS Statistics version 19 or higher

Calls to the spss.StartProcedure function (or the spss.Procedure class) should use the
form spss.StartProcedure(procedureName,omsIdentifier) where procedureName is
the translatable name associated with output from the procedure and omsIdentifier is the language
invariant OMS command identifier associated with the procedure. For example:

spss.StartProcedure(_("Demo"),"demoId")

For users with IBM SPSS Statistics versions prior to 19

If the extension command is to be used with SPSS Statistics versions prior to 19, a few extra
steps are necessary.

E	 Insert the following code after the call to the Syntax class, which is typically in the Run function
that implements the command.

32

Appendix A

#enable localization

global _

try:

_("---")

except:

def _(msg):

return msg

This ensures that the _ function is defined if an older version of the extension module is being
used. However, the text will not actually be translated unless a current version (1.4.0 or higher)
of the extension module is used.

For versions 16 and 17, the language for extension command output will NOT be automatically
synchronized with the SPSS Statistics output language, even with a current version of the
extension module. However, the language for extension command output can be set statically.
Before launching SPSS Statistics, set the LANGUAGE environment variable to the desired output
language, using the appropriate operating system command. Use the language identifiers that
would be used in a SET OLANG command or the POSIX language names. On Windows XP this
can be done using Control Panel>System>Advanced>Environment Variables.

E	 If there are print statements in the code that could display translated text or other non-ascii text
such as file names, they must be removed or converted to pivot tables. The NonProcPivotTable
class in the extension module (version 1.4.0 or higher) is a convenient alternative to print. Text
in exception messages is converted to a Warnings pivot table by the extension module, but will
simply be printed by older versions which will fail if it contains extended characters.

E	 If there is any non-ascii pivot table cell text, it must be removed. This limitation does not apply
to other areas of pivot tables such as labels.

E	 Do not translate the procedure name passed to the spss.StartProcedure function or the
spss.Procedure class. Doing so would change the OMS command identifier, which is
expected to be language invariant.

Extracting translatable text

The Python implementation code is never modified by the translators. Translation is accomplished
by extracting the translatable text from the code files and then creating separate files containing the
translated text, one file for each language. The _ function uses compiled versions of these files.

The standard Python distribution includes pygettext.py, which is a command line script that
extracts strings marked as translatable (i.e., strings wrapped in the _ function) and saves them
to a .pot file. Run pygettext.py on the implementation code, and specify the name of the
implementing Python module (the module containing the Run function) as the name of the output
file, but with the extension .pot. If the implementation uses multiple Python files, the .pot files
for each should be combined into one under the name of the main implementing module (the
module containing the Run function).
� Change the charset value, in the msgstr field corresponding to msgid "", to utf-8.

http:pygettext.py

33

Localizing Extension Commands Implemented in Python

� A pot file includes one msgid field with the value "", with an associated msgstr field
containing metadata. There must be only one of these.

� Optionally, update the generated title and organization comments.

Documentation for pygettext.py is available from the topic on the gettext module in the
Python help system.

Translating the pot file

Translators enter the translation of each msgid into the corresponding msgstr field and save
the result as a file with the same name as the pot file but with the extension .po. There will be
one po file for each target language.
� po files should be saved in Unicode utf-8 encoding.
� po files should not have a BOM (Byte Order Mark) at the start of the file.
� If a msgstr contains an embedded double quote character (x22), precede it with a backslash

(\). as in:
msgstr "He said, \"Wow\", when he saw the R-squared"

� msgid and msgstr entries can have multiple lines. Enclose each line in double quotes.

Each translated po file is compiled into a binary format by running msgfmt.py from the standard
Python distribution, giving the output the same name as the po file but with an extension of .mo.

Installing the mo files

When installed, the mo files should reside in the following directory structure:

lang/<language-identifier>/LC_MESSAGES/<command name>.mo
� <command name> is the name of the extension command in upper case with any spaces

replaced with underscores, and is the same as the name of the Python implementation module.
Note that the mo files have the same name for all languages.

� <language-identifier> is the identifier for a particular language. Identifiers for the languages
supported by IBM® SPSS® Statistics are shown in the table.

For example, if the extension command is named MYORG MYSTAT then an mo file for French
should be stored in lang/fr/LC_MESSAGES/MYORG_MYSTAT.mo.

Manually installing translation files

If you are manually installing an extension command and associated translation files, then the lang
directory containing the translation files should be installed in the <command name> directory
under the directory where the Python implementation module is installed.

For example, if the extension command is named MYORG MYSTAT and the associated Python
implementation module (MYORG_MYSTAT.py) is located in the extensions directory (under
the location where SPSS Statistics is installed), then the lang directory should reside under
extensions/MYORG_MYSTAT.

http:lang/fr/LC_MESSAGES/MYORG_MYSTAT.mo

34

Appendix A

Using the example of a French translation discussed above, an mo file for French would be stored
in extensions/MYORG_MYSTAT/lang/fr/LC_MESSAGES/MYORG_MYSTAT.mo.

Deploying translation files to other users

If you are localizing output for a custom dialog or extension command that you intend to distribute
to other users, then you should create an extension bundle (requires SPSS Statistics version 18 or
higher) to package your translation files with your custom components. Specifically, you add the
lang directory containing your compiled translation files (mo files) to the extension bundle during
the creation of the bundle (from the Translation Catalogues Folder field on the Optional tab of the
Create Extension Bundle dialog). When an end user installs the extension bundle, the directory
containing the translation files is installed in the extensions/<extension bundle name> directory
under the SPSS Statistics installation location, and where <extension bundle name> is the name of
the extension bundle with spaces replaced by underscores. Note: An extension bundle that includes
translation files for an extension command should have the same name as the extension command.
� If the SPSS_EXTENSIONS_PATH environment variable has been set, then the extensions

directory (in extensions/<extension bundle name>) is replaced by the first writable directory
in the environment variable.

� Information on creating extension bundles is available from the Help system, under Core
System>Utilities>Working with Extension Bundles.

Language Identifiers

de.	 German

en.	 English

es.	 Spanish

fr. French

it. Italian

ja.	 Japanese

ko.	 Korean

pl.	 Polish

pt_BR. Brazilian Portuguese

ru.	 Russian

zh_CN. Simplified Chinese

zh_TW. Traditional Chinese

http:extensions/MYORG_MYSTAT/lang/fr/LC_MESSAGES/MYORG_MYSTAT.mo

Appendix

B

Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

© Copyright IBM Corporation 1989, 2012. 35

36

Appendix B

Such information may be available, subject to appropriate terms and conditions, including in

some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are

provided by IBM under terms of the IBM Customer Agreement, IBM International Program

License Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products,

their published announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any other claims

related to non-IBM products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any similarity to the names

and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not

appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

This product uses WinWrap Basic, Copyright 1993-2007, Polar Engineering and Consulting,
http://www.winwrap.com.

Other product and service names might be trademarks of IBM or other companies.

Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.

Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

http://www.ibm.com/legal/copytrade.shtml
http:ibm.com
http://www.winwrap.com

Index

Command element, 20

EnumValue element, 25

legal notices, 35

Parameter element, 21

Subcommand element, 25

trademarks, 36

© Copyright IBM Corporation 1989, 2012. 37

	Writing IBM SPSS Statistics Extension Commands
	Contents
	1. Introduction to Extension Commands
	Integration Plug-ins
	XML Specification of the Syntax Diagram
	Implementation Code
	Deploying an Extension Command

	2. Examples of Extension Commands
	Wrapping Around an Existing Python Function: PARETO
	Wrapping Around an Existing R Function: polychor
	Implementation Code

	3. Extension Schema Element Reference
	Command Element
	Parameter Element
	EnumValue Element

	Subcommand Element
	Working with Arbitrary Tokens
	Examples

	A. Localizing Extension Commands Implemented in Python
	Modifying the Python code
	Extracting translatable text
	Translating the pot file
	Installing the mo files

	B. Notices
	Index

